
System under test
For the sake of simplicity, in this white paper we’ll use a hypo-
thetical classical three tier application composed by a RDBMS 
backend, an application server and a GUI front-end. Let’s name 
this application SUT. 

Testing SUT will allow us to demonstrate quite a few testing 
patterns easily applicable to other scenarios. Here we will follow 
a top-down approach, since it allows us to, first of all express the 
more general subjects and after that, to drill down to the core 
components of the test.

Test purpose
One of the requirements of SUT – like so many other applica-
tions – is to authenticate a user given its login and password. 
Testing this requirement, will be the main goal of our tests. We 
will create two tests: the first one, to test a valid login and the 
other one, to test an invalid login attempt.

Since Tests on Automation Lab are built composing one or more 
previously created steps, we’ll start by creating these, and after 
that associate them with each test in a proper way. 

Minor details will be trimmed from the test steps’ definition due 
to their lack of relevancy in this context.

Steps creation
Step 1: Database Setup – a SQL script whose purpose is to put 
the backend database in a known state. Its content is nothing 
more than a bunch of deletes or truncates and a couple of in-
serts to fill some required look up table values.

Step 2: Create User – is also a SQL script whose purpose is to 
create and insert a valid user in the proper table(s).

Step 3: Monitor Application Server Logs – a bash script which 
will be executed in a remote host via a SSH connection. It will run 
a tail command on a text log file to get feedback regarding the 
application server’s operations. This kind of steps has a crucial 
usefulness for later debugging purposes when something goes 
wrong with the system under test.

Step 4: Do Login – a GUI automation script recorded by Automa-
tion Lab. Since this script is specified in a custom DSL, we’ll pres-
ent here a brief sample:

navigate <WEB_APP_URI>
write “jdoe” (name=”login”)
write “jdoespass” (name=”password”)
click button (value=”submit”)
capture page
log

The above script has five different types of instructions:

1.	 navigate – opens the target browser and points it to 
the target application URI. This URI will be translated ac-
cording to the active Environment (more on this subject 
below)

2.	 write – emulates a set of keystrokes in a GUI widget 
(e.g. a text box)

3.	 click – emulates a mouse left click in a GUI widget (in 
this case, a button)

4.	 capture page – captures the full page (scrolling it 
to the bottom if necessary) as an image to attach to the 
test execution evidence

5.	 log – dumps a textual representation of the html docu-
ment currently active on the target browser. As you’ll 
see bellow, the output of this instruction will be used to 
auto-evaluate the step result.

Step 5: Check User Access Tables – another SQL script which 
makes a select on a table where are inserted all authentication 
attempts.

Test Environments
Each of the above mentioned steps has a named alias. These 
aliases will allow Automation Lab to map them to their effective 
target hosts on the execution stage. Target hosts are configured 
in an Environment and as appropriate, tester is asked for IPs, 
credentials, connection types, etc. 

Untying the steps’ executable content from the physical infra-
structure’s definition turns possible to setup several test Envi-
ronments (replicating what usually happens on a test depart-
ment) while keeping the entire test set ready to be executed in 
any of them according to the project demands.

Functional Testing
The purpose of this white paper is to give you a somewhat detailed overview of functional tests’ design on 
TeStudio Automation Lab. You will be presented some of the tool’s main concepts regarding its test’s automation 
approach. After reading this paper you should get a clear idea of the tests’ anatomy on Automation Lab and also 
get some insights about how can these concepts be transposed and applied to your own reality.

A recommended reading to better contextualize this white paper is Telbit TeStudio flyer which provides a high 
level TeStudio suite overview including the module presented here in greater detail – Automation Lab.



Test a successful login attempt
Having created those five steps, all we have to do now to com-
plete the first test is to drag them to our test record to set up 
their workflow which will be:

Step 1 is the test starting step

•	 Step 2 starts after Step 1 ending
•	 Step 3 starts after Step 2 ending and continues to run until 

the end of the test
•	 Step 4 starts after Step 2 ending
•	 Step 5 starts after Step 4 ending

 
Since, at this point we have not – yet – defined any kind of test 
oracle for our steps, by now the execution of this Test will be 
driven by Automation Lab – in a wizard like interface – but the 
evaluation of each Step and hence that, the overall test result 
will be delegated to the tester. Later – on section Steps evalua-
tion – we’ll show how to define a test oracle for each Step to turn 
this test a fully automated one.

When running these steps on a test case context, all their output 
(be it text or captured screen shots) and the full test environ-
ment characterization are collected and attached to the Test 
Execution Log.

Test a failed login attempt
To design this test, all we have to do is, duplicate the previous 
one, remove the second step and revise its designation/descrip-
tion. All the remaining workflow (giving that Steps 3 and 4 are 
updated to start after Step 1 instead of the removed Step 2) is 
still valid and suitable enough to test our failed login attempt 
since we removed the step which creates the user on the back-
end database. This way, when executing Step 4 on this context, 
the login attempt must fail.

This – even quite simple – scenario makes a good job illustrat-
ing the point of steps (re)usage on Automation Lab. Our field 
experience shows that on test projects containing more than 
one thousand test cases, on average, each step is used on fifty 
test cases.

Steps evaluation
In the above sections we described two tests and their compos-
ing steps. As we mentioned there, their execution is automated 
by Automation Lab but the evaluation result is still fully delegat-
ed on the tester. In this section we’ll show how to automate each 
step’s evaluation defining a test oracle to each of them.

On Automation Lab, a test oracle specification is created using 
regular expressions. To be fully automated, a test must have 
at least one step with its test oracle defined. Test oracles are 
composed by three properties: a timeout value (in seconds, with 
a mandatory value greater than zero), a fail and/or a pass condi-
tion. From now on, we’ll name steps with a test oracle defined, 
automated steps.

Test oracles have the following semantics:

Test Oracle Setup Automated Step Result

Fail 
Condition

Pass 
Condition

Fail 
condition 
matched

Pass 
condition 
matched

Timeout 
expires 

before a 
match

Defined Not Defined Not OK N/A OK

Not Defined Defined N/A OK Not OK

Defined Defined Not OK OK Aborted

Test evaluation semantics
Tests on Automation Lab have an execution status property 
which may be given one of the following values: OK, Not OK, 
Aborted or No Run.

A test is given an OK value if, and only if, all their automated 
steps are evaluated as being OK. When at least one step is evalu-
ated as Not OK, then the test is also evaluated as Not OK. If at 
least one automated step is evaluated as Aborted and none of 
them is evaluated as Not OK, then the test is evaluated as Abort-
ed. This last test execution status – Aborted – usually happens 
when there is something wrong on the test environment or in 
the steps definition.

Defining Test Oracles
Now we’re ready to define the test oracles to the steps belong-
ing to the first test:

Step Fail condition Pass condition
Timeout 
secs

Step 1
Database Setup ORA-\d{3,5} \d+\srows\saffected 10

Step 2
Create User 1\srow\sinserted 5

Step 3
Monitor App 
Server Logs

Exception|ERROR jdoe\slogs\sin 60

Step 4
Do Login Wellcome\sjdoe 15

Step 5
Check User Ac-
cess Tables

ORA-\d{3,5} 1\srow\sreturned 10

As you can guess from the above table, fail conditions mostly 
catch execution errors (on Steps 1 and 5 the expression catches 
the most common types of Oracle PL/SQL error codes) while 
pass conditions mostly assert the expected steps’ side effects. 

Unlike this proposed sample, where all conditions are a bit loose, 
both condition types can - and in fact they should - be as “tight” 
as possible to prevent errors from remaining undetected. 

Given Automation Lab’s concerns on knowledge gathering re-
garding the system under test, along the test project’s lifecycle, 
test oracles tend to become a lot narrower. This way, chances 
are that even if a defect leaked to a production release, when 
retesting – revising testing oracles to catch that flaw – is it much 
more unlikely that similar defects remain undetected on follow-
ing releases. 

As steps’ reuse rate increases, chances are that when revising 
their test oracles, testers are at the same time improving the ef-
fectiveness of several tests and due to that, also increasing their 
associated requirements testing wideness.

We should also note here that, purposely, the last two steps do 
exactly the same functional validation, however each one does it 
on a distinct system layer – after a successful login attempt, Step 
4 asserts the expected visual output on the GUI front-end, while 
Step 5 asserts that there were created the appropriate records 
on the back-end database. Automation Lab encourages an “all 
layer probing approach” since this way, chances of catching soft-
ware faults are dramatically maximized. This double-checking 
does not raise test set execution costs since both their execu-
tion and evaluation are fully automated.

Conclusions

This white paper presented a brief and skimmed 
technical overview of Automation Lab’s approach 
to functional test a software system. 

Not with standing having much to more to say 
about designing and automating tests, we hope 
this paper showed Automation Lab’s suitability to 
design, execute and evaluate software function-
al tests and also that, its approach is pretty much 
aligned with Testing/QA Departments mission.

For an overview of Telbit products and services please visit www.telbit.pt


