
Through the Testing Glass
Pedro Pereira, Márcio Neves, António Sá Pinto, Bruno Ferreira, José Pedro Tavares

Telbit
Aveiro, Portugal

{pmpereira, mneves, asapinto, bferreira, jtavares}@telbit.pt
www.telbit.pt

Abstract—Despite the growing trend regarding software qual-
ity (or should we say...lack thereof it), in a non-neglectable part
of the industry, methodical and systematic testing is still an
undervalued relative on the development life cycle.

Based upon our field experience, in this article we shall try
to dissect some of the main causes of this (mis)practice and
propose some practical answers to overcome the daily restraints
which emerge on the way of those willing to deliver better quality
software.

Along the way, it will also be described the anatomy of a
software testing tool, its accomplishments on the field, what we
learned from its deployment on several organizations and also to
explain why — in our perspective — a tool like this is suitable
to ease the burden of software testing in the real world.

Index Terms—software testing, software development lifecycle,
software quality assurance.

Conflict of interest statement: Telbit (the authors’ af-
filiation) develops a product — TeStudio — which has
the following mission: to provide software development
teams the ability to deliver quality software products
without the hassle of making them aware of a painful
and heavy Software Quality Assurance (SQA) process.
TeStudio includes a module to manage, design and
automate software tests — TeStudio Automation Lab.

I. INTRODUCTION

A. The blue pill1

Edward Stanley wrote in 1873:

“Those who think they have not time for bodily
exercise will sooner or later have to find time for
illness.”2.

The previous quote regarding the care and well-
ness of a complex system — the human body —
has a huge — although maybe not so obvious —
corresponding analogy on our industry.

A century later, Boehm [2] described a similar
effect on the Software Development Life Cycle
(SDLC): neglecting software quality in the early
stages of development will dramatically increase the
cost of products’ maintenance and operation once

1The Matrix (1999) — Andy Wachowski, Lana Wachowski. In this movie,
the question of which pill to take illustrates the personal aspect of the decision
to study philosophy. Do you live on in ignorance (blue pill) or do you lead
what Aristotle called “the examined life” (red pill)?

2quoted in the May 2004 issue of the Harvard Men’s Health Watch

deployed in the wild, i.e. the later the defects are
found, the more they cost to fix.

So, being this statement nowadays so consensu-
ally obvious, what is it that makes systematic testing
so unwilling to be included as a first class duty on
the SDLC? Are most of the software development
managers mad? Yes they are. Even thought, given
the current industry mindset they would be even
madder, if they didn’t act the way they do.

Software development stakeholders (seem to)
have serious and very rational arguments for this
kind of behaviour:
• Besides critical systems like the ones built for

medical devices, the space and aeronautics in-
dustry3, etc., defects are (still) somewhat tol-
erated in a software product as long as it —
although far from perfect in a “defect free” sense
— still brings value to the end user.

• Since most of the times, tests are not “de-
liverables” by themselves4, this usually leads
managers — when deadlines approach — to
shrink the allocated time to their execution (if
and when there were time allocated to that
purpose).

• Given the urge to deliver and the tightening
schedules, (some) exploratory/ad hoc [4] or
smoke testing [6] usually (seems like to) provide
the best cost/benefit option.

B. The red pill

In the classic No Silver Bullet — Essence and Ac-
cidents of Software Engineering, Brooks [1] stated:

“From the [software development] com-
plexity comes the difficulty of communication
among team members, which leads to product
flaws, cost overruns, and schedule delays. From
the complexity comes the difficulty of enumer-
ating, much less understanding, all the possible
states of the program, and from that comes the
unreliability.”

3even thought neither these ones are immune to severe malfunctions caused
by faulty software [13]

4software test factories are a counter example, since test plans and their
execution results are the provided service’s main outcome



In the same article, the author presents
the reasons why is software one of the most
complex human creations. Given the embryonic
state that Software Engineering discipline still
presents, we must accept that testing cannot
prove by itself the absence of software de-
fects [3].

Despite that, it surely can — depending on
its coverage extent — give valuable and mea-
surable hints regarding the match (or mismatch)
between what software is supposed to do, and
what in the end, it actually does. Moreover,
testing can also rise to the surface what it is that
the System Under Test (SUT) is not expected
to do, and actually does.

Our real world experience, reveals the huge
— and unreal — gap between day zero, when a
company only performs ad-hoc testing and the
day when it intends (and actually starts) to be-
gin systematic testing. Therefore, our proposal
is to accomplish this with a soft, cumulative,
non disruptive and self-rewarding investment.

We must state that, this gradual and self
sustained path, was itself a pattern we saw
emerge on the behaviour our users in their
different business contexts, and it goes like as
following:

1) Turn requirements into test cases: More
or less formally defined, controlled and tracked,
almost every software system, has on its base
a given set of functional requirements.

So, the very first step is to generate at
least one test case record for each requirement.
At this stage, we should not expect these test
cases to be very fine grained since their main
purposes (at least for now) are: provide a basis
to start tracking along the way which tests
already run and to stamp their pass/fail outcome
results.

This small step — a tiny one — brings out:
• a centralized testware repository (although

an incipient one) which enables knowledge
sharing through all the SDLC stakeholders

• a reusable test set able to be the groundwork
for the upcoming testing cycle, preventing
the “start-all-over-again-from-scratch” syn-
drome

• requirements/tests/defects tracking capabili-
ties
2) Breaking down tests into steps: After

some iterations appending and fine graining
tests, it turns out very clear that tests share some
common steps like:
• Set the SUT to a known state
• Perform some kind of authentication

• Do a bunch of actions
• Make some SUT’s properties validation
• Tear down/clean up the system

The natural way to manage this fact, is to
start decomposing tests in their atomic steps.
These steps, may start as an informal/textual
script to guide testers on the actions they have
to perform to accomplish the test.

Therefore, test designers end up building
a step library which allows them to create
new tests mostly by (re)composing a subset of
already existing steps, intertwining them in a
suitable workflow. Tests end up being an always
update receipt to follow with some checklist
like facilities.

In this stage, the information system by it-
self also encourages testers to attach the output
results collected by tests’ executions for future
reference/auditing.

3) Steps automation: So far, our tests and
steps have been “helpers” providing guidance
to the testers through the tasks they have to
perform — manually — to run the tests.

It is time to turn on the automation engine
and have some of these steps automated, freeing
testers to more intellectually attractive tasks.

In many cases, developers and testers al-
ready have handy scripts/small utilities (batch
files, shell scripts, sql scripts, etc.) in their daily
testing/development weaponry.

As tests are built from steps’ composition,
the next stage is to set these up with the above
mentioned scripts. From now on, every single
test making use of these steps will run and
collect their output in an automated way.

With testers now (a lot more) free from time
constraints, it is now feasible to progressively
“arm” each and every test with a discretionary
number of steps to perform tasks like:

• verify if the system is in a well known state
• check environment properties
• capture log files
• run database dump/restore scripts
• setup services configuration
• etc.

Since these are the most likely reusable
steps, it should be obvious by now that, along
the way, the “effort” to automate these step
types is well worth it. The main reasons are:

• virtually every test makes use of them
• usually grab precious information for future

defects’ debriefs
• frees testers from the burden of having to run

manually half a dozen different tools/utilities



to effectively run a test and grab manually
their outcomes

• dramatically increase the overall testing pro-
cess determinism without adding significant
runtime overhead
4) Steps evaluation: In the previous stage

we described the steps automation benefits (fo-
cused on automatic execution and output data
grabbing). In this one we will take automation
even further extending it to evaluate the steps
outcome.

Until now, it was up to the tester, to observe
all the steps output, looking for clues regarding
the system well/malfunction. Frequently, testers
find themselves looking after the same common
patterns when tests are being executed.

So, the point here is — when applicable —
define an oracle [8] which performs this “ob-
servation” for the tester and stamp a pass/fail
outcome on the step’s execution. We will fur-
ther discuss this mechanism on section II-B.

Like all previous path stages, this one can
also be taken progressively. Being tests com-
posed by reusable steps, when an oracle is
defined for one step — each and every related
test benefits from it. Moreover, this oracle can
(and should) be refined along the way — tight-
ening the evaluation criteria — making the test
set even more effective on its SUT evaluation
process.

Due to the automation degree achieved
somewhere near by this stage, the test set is
ready to allow (fully automated) regression
testing. This is actually a huge step towards the
delivery of better quality software products.

Our experience shows that this last stage is
probably the steepest one, since sometimes its
far from trivial to figure out a way to describe
formally all the SUT’s expected outcomes. De-
spite that, the trend we have seen so far, is that
our users’ testing sets are pursuing and steadily
approaching the full automation, at least in a
given subset of their requirements base.

C. The path’s side effects

At this point, it should be clear how — step-
by-step — and in a feasible way, we gradually
evolved from a point where only some ad-
hoc/exploratory testing was performed, to a
point where we have a test set handy to scale
— in its testing strength — up to our needs and
available resources.

Besides all the above mentioned benefits,
following this path also brings along:
• a more controlled and deterministic testing

process

• automated regression testing
• a safety net under which we cannot fall
• a “de facto” SUT functional specification
• a non neglectable peace of mind sense re-

garding the way our system is evolving
• a set of useful and always up-to-date software

quality metrics

II. THE FRAMEWORK SCAFFOLDING

Given our field experience, in this section
we will share some of the distinguishing fea-
tures that — in our perspective — a software
testing tool has to provide (and ours hopefully
does) in order to overcome some of the chal-
lenges presented by testing software applica-
tions.

One of the main concerns when deploying
this kind of tools in an organization, derives
from their potential to create some entropy. We
managed to overcome this issue creating some
features which mimic the typical workflow of a
tester when he does not have a specialized tool
to help him design and execute tests. Some of
them will be briefly described here:

A. Steps heterogeneity

As an example, when a tester needs to test
a “create new user” requirement in a web ap-
plication meant to make the users provisioning
in a information system, a possible test for this
requirement could composed by the following
steps:
• step 1: use firefox user agent to navigate to

the provisioning page and create a new user
• step 2: run a database client to check that

there is a new record in the users data table
• step 3: collect the application server and

database logs
Each of these steps are in their essence very

distinct from each other.
Every step type should be eligible for com-

posing a test case, e.g., steps meant to query
a database may run simultaneously with steps
drawn to collect a log via a tail command exe-
cuted via a ssh connection while concurrently,
there can be steps performing actions on a
Graphical User Interface (GUI).

Since this is what actually happens on a
hand testing session, we believe that a testing
tool should allow that too.

B. Steps evaluation

If we think a bit about how a tester “manu-
ally” evaluates a test, we take out that in most
of the cases, he relies on textual content to draw
his conclusions about the steps outcome.



Since virtually all SUT’s properties (even
colors, dimensions, etc.) can be serialized into
text, Regular Expressions [9] — with their all
mighty power to describe text patterns — seem
to be the best option to perform this task.

Therefore, all steps fail/pass conditions are
asserted by means of regular expressions.

Despite the terrifying comments sometimes
heard when these are mentioned, it should be
noted that, regexes are as much complex as the
pattern one is trying to match5.

C. Abstracting steps

Often, we have to perform the same set of
actions with slightly different inputs to assert
about distinct SUT properties.

Instead of create one step for each of these
scenarios — that would lead us to steps main-
tenance nightmare — we should be able to
abstract them as much as we need to.

Therefore, test steps (their scripts, pass
and/or fail criteria, etc.) should be parameter-
izable in a way that, the very same step may
be “extended” to perform several validation
scenarios. E.g., the same step on one test can
validate if a record field in a given table is null,
while in another test, it can be parametrized to
assert that the same field has a value greater
than 5.

D. Piping steps

On some occasions, part of the information
needed to perform some steps execution and
validation in an SUT is only generated at its
runtime. When we do not have a way to know
these values upfront, we must be able to grab
these from the SUT and feed the following
steps with them (e.g. when we need to get a
primary key ID from DB record that will be
created in runtime).

To overcome this problem, we managed a
way — based on a similar mechanism above
described on section II-B — to give to the
step designer the ability to define a criteria set
specifying the content to be grabbed from the
SUT. This content may feed the following steps
using the mechanics mentioned on the previous
section (II-C).

E. When black is too dark

Usually in functional testing — regularly
rendered as black box testing [3] — testers
should only care about the inputs (actions) and

5e.g. the regex to match the word Telbit on a given text is...Telbit
— How scary is that?

verify the expected outcomes, i.e. they’re not
worried about the system’s inner details.

Despite that, when testers are asked to dive
into the systems’ guts, they should be able to
do that. Therefore, we should provide them the
ability to create test steps to drill down as deep
as possible in the SUT.

These steps usually take the form of DB
assertions, log files screening, etc. and end up to
be valuable resources on the debugging process.

F. Looking for the absence of...what?

On manual testing, testers almost always
observe the SUT to infer if its execution out-
come is the expected one and...if nothing un-
expected happened.

James Bach states that “Hand testing and
automated testing are really two different pro-
cesses, rather than two different ways to execute
the same process. Their dynamics are different,
and the bugs they tend to reveal are differ-
ent” [5] and also that “The exploratory tester
must watch for anything unusual or mysteri-
ous” [4].

A human tester may be able to detect hun-
dreds of problem patterns and distinguish the
harmless anomalies. Despite that, it is indeed
an arduous task to define an unambiguous cri-
teria to enable a machine to detect unexpected
behavior. Mimic this (intrinsic human) charac-
teristic turns out to be everything but an easy
task. How can we specify a criteria to match
with “anything unusual or mysterious”?

One way to at least approach and mock
this behaviour, is to gradually collect “error
fingerprints” and append them to the steps
fail criteria. Some of the best candidates are
clues like: uncaught exception trace messages,
services error signatures (like the famous 404
page on a browser), kernel panic messages, etc..

G. Extensibility

By integrating third party test automation
software, testers can combine multiple tools,
widely available and some without costs.

For example, one can use Selenium [10],
Watir [11], etc. for cross-browser functional
tests with sikuli’s advanced GUI recogni-
tion [12]. Web tests can also run distributed in
multiple servers. In fact, the possibilities are so
immense that a tester may use it’s favorite Load
and Performance Test tool along with the best-
pick for Web Site Security tool or even just a
simple HTML Link Checker.

Communities around the integrated soft-
ware also provide good support and low-cost



training. It’s increasingly common to find peo-
ple with former experience in these technolo-
gies, thus making them a valuable resource.
Integration also allows reusing existing tests
without throwing them away before acquiring
a test framework.

Existing tests that once were only run as
unit tests or in a continuous integration en-
vironment now become bridged to project’s
requirements and defects.

H. The Pesticide Paradox

The Pesticide Paradox [7] applied to soft-
ware testing states that: “Every method you
use to prevent or find bugs leaves a residue of
subtler bugs against which those methods are
ineffectual.”

Since tests are composed by several —
and reusable — steps provides our test set
an additional resilience degree regarding this
issue. Whenever we need to check a SUT’s new
property/behaviour, we can just tighten the few
necessary steps’ oracles and after that, all their
related tests are — by its nature — adapted to
this new circumstances.

I. Mostly Harmless

Given the above stated, we can see that
a test is just a bunch of “programs” running
in parallel with the SUT, constantly asserting
some of its properties.

Therefore, it is not very hard to fall in
the trap of adding (unnecessary) complexity to
the steps — and their entanglement — in a
way that it becomes uneasy to analise what
it does...begging to be debugged! When these
symptoms start, a bell should ring on the testers
mind and immediate measures should be taken
to prevent this handicap.

One of the (hard) choices we made to
minimize this threat — which we took very se-
riously — is to deny forks in the steps workflow
avoiding cyclomatic complexity.

Another symptom we usually notice is
when misconfigured tests start to interfere in
the SUT’s behaviour.

III. FIELD RESULTS

This section presents more than three years
of data created by TeStudio deployment on a
subset of our users. These customers develop
software mainly to other software development
organizations (regarding SDLC tools) and also
for the telecom industry.

Fig. 1. Average number of tests where a step is (re)used

The figures here presented are based on an
sample of one hundred and fifty thousand tests,
created and edited by approximately sixty users.

Figure 1 shows the evolution of steps reuse
along time. We can see that the steps reuse rate
has been increasing and by now, on average,
each step is part of more than sixty tests.

Fig. 2. Tests total count VS steps total count

Fig. 3. Average number of steps by test

On Figure 2, it is shown that the rate at
which steps are created is almost one order
of magnitude lower than the test creation rate.



Since the average number of steps per test has
not been decreasing — as can be drawn from
Figure 3 — this is an empirical proof that our
approach favoring the tests composition from a
step library was successful.

It should be noted that, although steps are
the most expensive item to design and auto-
mate, each bit of investment on these testing
assets will be divided by each and every test
where they are part of.

Fig. 4. Average test re-execution rate

The chart on Figure 4 shows the evolution
of the average number of times each test is
executed. We can see a breaking point near
by the 34th month. We can relate this huge
turning point to a serious investment made on
steps automation — and consequently — on
tests fully automation.

There is actually a very strong correlation
between these fully automated tests and their
higher re-execution rate values.

IV. FUTURE DIRECTIONS

Despite all the achievements already made,
we continue our efforts to develop an even more
mature tool suitable to ease the testing pain. In
a short/medium term, our focus will be:
• minimize the tool-mastery burden — de-

creasing the required skill sets to effectively
design, automate and evaluate test steps

• improve the information system facilities in
a way to ease the steep learning curve for
untrained testers

• provide users more guidance about what’s
happening at tests runtime

V. CONCLUSION

Unless a Silver Bullet is meanwhile found
— which seems unlikely — software testing is
not the antidote for the mismatch between what
the system is built to do and what it actually
does.

This mismatch eradication seems to be an
arms race between the always rising software
systems complexity and the degree to which we
are able to maintain their development under
control.

Systematic testing provides a way to steer
and keep the development process inside safer
trails in a cost effective way.

In the end, the main purpose is, by all
means, not to copycat Sirius Cybernetics Cor-
poration6, which among other devices, built
the famous Nutrimatic drink dispenser machine.
This device when asked for a cup of tea,
produces a beverage described by its consumers
as “almost, but not quite, entirely unlike tea”.

ACKNOWLEDGMENTS

We cheer Telbit’s mindset which enables
us to spend some of our time on the “not so
run-of-the-mill-daily” tasks and provide us the
opportunity to Think! about far more than the
ordinary issues.

We must also thank our clients, partners
and end users for their valuable nurture and
feedback, which provides us a fertile soil for the
sustained growth and maturity of our products.

REFERENCES

[1] Brooks, F. P., Jr. No Silver Bullet: Essence and Acci-
dents of Software Engineering, IEEE Computer (20:4),
April 1987, pp 10–19.

[2] Boehm, Barry W. “Software Engineering Economics”;
IEEE Trans. Software Eng., Vol.10 No.1, Jan.1984,
pp.4–21.

[3] Myers, G.J. The art of software testing, Second Edi-
tion revised and updated by Tom Badgett and Todd
M.Thomas with Corey Sandler, John Wiley & Sons,
Inc. 2004

[4] Bach, James, Exploratory Testing Explained, The Test-
ing Practitioner, E. van Veenendaal, ed. UTN Publish-
ers (2003)

[5] Bach, James, Test Automation Snake Oil, 14th Inter-
national Conference on Testing Computer Software,
Washington, USA.

[6] McConnell, Steve, Best practices: Daily build and
smoke test. IEEE Software, 13(4):144, 143, July 1996.

[7] Beizer, Boris Software Testing Techniques, 2nd Edition
1990.

[8] Baresi, L. and Young, M., Test oracles, Technical
report, Dept. of Comp. and Information Science, Univ.
of Oregon, 2001. http://bit.ly/9fkDwJ (as of 2010 July)

[9] Friedl, Jeffrey E. F. 2006. Mastering Regular Expres-
sions, 3rd edition. O’Reilly

[10] Gheorghiu, Grig A look at selenium. Software Quality
Engineering, 7(8):38–44, October 2005

[11] P. Rogers, B. Pettichord, and J. Kohl. Watir: Web
Application Testing in Ruby. Technical report, 2005.

[12] Yeh, T., Change, T.-H. and Miller, R.C. (2009). Sikuli:
Using GUI Screenshots for Search and Automation.
Proc. of the ACM Symposium on User Interface Soft-
ware and Technology (UIST 2009), 183-192.

[13] Nuseibeh, B. Ariane 5: Who Dunnit? (1997) IEEE
Software, 14(3):15–16.

6Douglas Adams (1978), The Hitchhiker’s Guide to the Galaxy


