

Currently, TeStudio is composed by four
main modules each one with a well defined
purpose and focused on a software quality
assurance activity:

TeStudio is a system whose main purpose
is to lighten the tasks related to software
quality assurance (SQA) in the software
development activity.

TeStudio designers are thrived in
continuously developing a system that
follows and gathers the best practices being
adopted worldwide, related to software
quality assurance activities, without forcing
the adoption of any SDLC methodology or
pre-built process.

TeStudio creates key information flow paths,
which enables symbiotic relations between
stakeholders, developers, testers and SQA
roles.

TeStudio’s mission is to provide software
development groups the ability of delivering
quality software products without the hassle of
making them aware of a painful and heavy SQA
process.

TeStudio is focused on continuous Quality
Improvement by providing means to evolve the
following concurrent processes following the
Deming Wheel (Plan-Do-Check-Act) approach:

•	 processes of software development lifecycle
activities

•	 processes of defect detection, removal and
prevention

Although TeStudio is a family of products, it is
not necessary to adopt all the four modules to
build a Software Quality Assurance solution.

Each TeStudio module handles a number of 3rd
party integrations that unlocks the potential of
implementing custom SQA systems.		

These integration capabilities are also used to
plan phased integrations of TeStudio.

 TeStudio provides an out-of-the-box integration
with Service Manager which is Telbit’s service
management web solution for small to medium
sized businesses and organizations. Service
Manager is fully oriented to deal with support
activities related to software development
industry.

Requirements Analysis
and Specification

TSRM provides the means to make an
easy management of requirements,
since it creates a mediation point in the
communication flow between the project
stakeholders and the development team.

Requirement classification, conflict
resolution and monitoring, dependency
and hierarchy analysis, prioritization,
requirements packaging are some of the
concerns of TeStudio Requirements
module.

The knowledge regarding a project is built
upon each interaction that is made with
the requirements database. TSRM covers
several problem areas regarding requirement
attributes such as Discrimination (status and
priority), Quality (unambiguous, complete,
verifiable, consistent and traceable) and Risk
(feasible and dependable).

Change Management, Tracing
and Monitoring Coverage

Software Quality Assurance starts on proper
and effective Requirements Management.
With TSRM, every interaction with a
requirement that results in some kind of
change is recorded with the necessary
detail that permits a detailed and accurate
configuration management of all SQA related
activities.

Auditing and tracing activities can be done
independent of the particular interveners
related to the item under attention.

Requirement metrics

Requirements coverage monitoring as
well as other key indicators are essential
to keep control of the defined SQA levels
as well as project evolution regarding SQA

Requirements are definitions of the boundaries,
constraints and needs of a software product. One can
see the requirements as the clauses of a formal contract
between the development team and the interested part
in a software product.

TeStudio Requirement Manager (TSRM) is in charge
of easing the activities regarding the systematic
handling of requirements through a dedicated interface
built for this purpose.

By integrating TSRM with the other TeStudio
family products, requirements gain pivoting
capabilities, and the user can reach the
defects and tests related with the focused
requirement.

Requirements Sources and Elicitation

Since the very first contact with a client, the
development team starts to acquire useful information
vital to the success of the upcoming product. All the
information gathered that is relevant to the software
project must be registered. The collected information is
part of requirements elicitation activity, and it’s relevant
to the requirements analysis and specification.

TSRM encourages a systematic handling of the
information that flows between the client and the
development team, without super-imposing any type of
methods to the gathering of information.

The methods can go from interviews, prototypes,
meetings to observation, and the sources from domain
knowledge, stakeholders to organizational environment
that supports a business process.

related indicators - test coverage, test count,
defect removal rate, defects main causes,
requirement risk management, etc.

TeStudio provides a data analytics module,
which has a single purpose: to concentrate
all the responses to the answers regarding
Software Quality Assurance Metrics.

By concentrating the right amount of
information in one single place, TeStudio
Data Analytics brings visibility of the project
key indicators to all the people who matters.

Requirements Validation
and Verification

The validation of the system being
developed is a continuous process that
requires the stakeholders interaction
with the system being developed. The
stakeholders of a project should validate
if the system goes towards their needs.
TSRM is a privileged contact point between
the stakeholder and the system being
developed.

As stated before, a requirement defines
a boundary, constraint or need, thus
requirements are the verification points
of a product in development. The product
being delivered against the specified
contract should be verified regarding each
requirement. This is where Requirements
Management and Software Testing
disciplines intercept. One must conduct
an appropriate verification of every
requirement, preceding the delivery of a
product.

These verifications are conducted
in TeStudio Automation Lab.

Since testing is one of the critical stages on the Software
Development Lifecycle, TeStudio has a module specially
purposed to design, manage, run and evaluate software
functional tests - TeStudio Automation Lab (TSAL).

Our vision to this module is - from the very start - to build
a system which fosters testware knowledge spreading
among a software testing team and the remaining
stakeholders like developers and project managers.
Besides the information system component, this module
also allows testers to specify, run and evaluate software
tests.

Automation Lab has built in modules suitable to
test Web, Microsoft© .NET Framework stand alone
applications and also applications which run on a Java
Runtime Environment™.

These tests lie on fully automating the target
application’s GUI emulating a user/tester behavior.

Automation Lab also provides support to design and
execute tests targeting several RDBMS. Despite this,
Automation Lab is not tied up to any specific SQL
dialect, enabling users to use whichever one they find
most appropriate to each particular scenario.

Moreover, Automation Lab’s architecture also allows
testers to design and execute tests targeting local or
remote command line applications and also web services
(e.g. SOAP or REST) given that there is available a “proxy”
process ready to invoke their published operations and
output their results.

Anatomy of a Test

Tests on Automation Lab can just be
a textual script to guide the tester. On
the other hand, they can be a set of fully
automated scripts which are automatically
executed and evaluated without testers’
intervention. These approaches are by no
means mutually exclusive since Automation
Lab also supports hybrid tests i.e., tests
composed by manual and automated steps.
It’s up to the test designer to judge the best
tradeoff regarding manual versus automated
test execution and/or evaluation.

Tests are designed combining a set of atomic
and reusable steps in a suitable workflow.

 For example, in a scenario of testing one
given requirement in a classical three tier
application, composed by a RDBMS backend,
an application server and a GUI front end, a
test is likely to include steps performing the
following tasks: put the backend database
in a known state, capture application server
logs as long as the test is running, exercise
some system’s GUI functionalities and
finally, assert the actions’ side effects on
the backend database. In a fully automated
scenario, each of these steps may be
independently evaluated against previously
defined pass and/or failure conditions. Each
step’s test oracle is expressed using regular
expressions.

As you can guess from the above example,
one single test may be composed by several
kinds of steps: SQL, Bash, GUI automation
scripts, etc. Each of those types of steps
has its own way to express the procedure
to be executed on its target. All but the GUI
automation scripts are already known by the
average test designer since they are common
and standard ways to interact with systems
under test.

GUI automation scripts are specified in
a simple yet powerful Domain Specific
Language specially designed to express
actions on GUIs’ widgets.

Most of these scripts may be created using
the capture/playback features provided by
Automation Lab.

Environment Decoupling

Since test steps will be executed on
databases, application servers, remote
hosts, local applications, etc, Automation
Lab provides a way to store and manage
this information. The set of target hosts
characterization is called an Environment
and each step has a weak reference to their
target host using a named alias.

This way, it is possible to setup several
test Environments, and right before start
executing the tests, the tester can pick up
one of the several Environments available to
execute the test set.

A side effect of this feature is that this
way, Automation Lab ends up to store in
a centralized way the characterization of
the entire test Environments in a testing
department.

Automate Steps’ Evaluation

Heavily conditioned by the nature of the
system under test and also by the functional
requirements being tested, there could
be more or less tests/steps suitable to be
automated. Automation Lab allowing
manual, automatic and also a hybrid
approach to test execution relies on the
tester to judge the best tradeoff in each
particular scenario. However, Automation
Lab has a unified approach to define the
test oracles which already proved to be
an effective way of automating steps
evaluation. All types of steps, manage to
output text from their execution. Based
on this principle it is natural to use regular
expressions to characterize the expected
steps’ outcome.

These can be as simple as a string to
match an exception or error codes on a
trace log or otherwise, complex enough
to perform an elaborate pattern matching
to express more demanding evaluation
scenarios.

Although steps automation has an
obvious upfront cost, when properly
done - in most of the cases - it increases
the tests’ resilience to the human ad-hoc
evaluation shortcomings in a dramatic
way.

Regression Testing

Experience shows that along the
development and maintenance stages of
a software project, hardly any test project
is a complete fresh start.

Automation Lab allows previously
created testware regarding similar/
previous projects to be (re)used to make
the base of newer runs.

This is a critical issue when performing
regression testing, due to the high degree
of overlap on the amount of tests to be
re-executed between two versions of the
same system.

Automation Lab really encourages a
test set to be built based on previous
ones (eventually updating or even
removing some legacy items). Since full
testing a reasonably complex system is a
potentially endless task, this continuous
improvement, turns the test set more
effective along the time and better
suited to find (at least) the most harming
defects. This also frees the testers to
improve the tests quality instead of being
worried “reinventing the wheel” every
time a new test cycle begins.

Test Run Evidences

Automation Lab provides the
development team properly formatted
test reports which contain all tests’
Environment characterization (target
hosts including user credentials,
etc) pre/post conditions, executable
content and eventual traces/log files
content. These collected evidences
are an essential asset to attach to
defect records easing the developers’
diagnostic job and therefore turn the
defect correction more expedite. In the
case of tests which run as expected
these evidences are also stored for
future audit purposes.

Extensibility

Given the diversity of systems under
test, their architectural structure and
interfaces’ heterogeneity, it is not
realistic to build a tool aiming, only on
its own to be suitable to perform tests
on all platforms in the most effective
way. To overcome this issue,

Automation Lab provides an
extensibility mechanism which
allows software vendors to create
and integrate custom utilities to be
executed and evaluated by its test
execution/evaluation engine.

Software Quality Assurance is defined as the systematic
approach to the evaluation of the quality and adherence
to agreed upon standards, processes and procedures.
The flaws identified and registered counts as defects
of a product, and its quality is usually measured by the
number of its defects. The anomalies of a software
product should be carefully controlled since it can
seriously affect the user experience of the developed
product, as well as the image of the responsible
developing team/ company.

TeStudio Defect Manager (TSDM) manages
a database of defects found since the very
start of the development phase as well as their
lifecycle.

Defects identification and
characterization

Once a defect is identified TSDM provides a registration
point for all the details related to the identified defect.
The defect identification is accomplished by determining
a set of key properties along the defect lifecycle:
description, severity, priority, detected by, assigned to,
cause, origin, state, etc.

An adequate characterization of defects
leads to a better understanding of the
product, facilitates its correction, and
creates information suitable for being
consumed by project intervenient
(development responsible or customer).

Rather than build a complex system
that predicts all the possible cases of
characterization of a defect, TSDM offers
customization mechanisms that allows
an adaptation to different development
methodologies or processes. TSDM can
be adjusted to the process defined to deal
with defects, and not the other way around.
One can customize the defect workflow
definition, and the number and type of
fields that characterize a defect.

Quality improvement
indicators

As well as with Requirements and Tests,
TeStudio Data Analytics brings visibility
to defect related metrics such as creation
rate, correction rate, defect state, main
defect causes, requirements having defects,
etc. By having access to key metrics it is
possible to plan and design preventive and
corrective measures as well as checking its
effectiveness.

By iterating along the Plan-Do-Check-Act
wheel, it’s possible to evolve and improve
the business processes defined in an
organization.

Up-to-date picture

Defects can be monitored and tracked by
taking in account the large number metrics
abstracted from the project details, but it
also provides the mechanisms to keep the
defects intervenient - usually developers
and testers - with up-to-date information of
a defect evolution.

The involvement, commitment
and motivation levels of a team are
benefited if they have a clear and broad
picture of the project and how the
individual work contribute to push the
project forward.

RSS subscription of a defect or a set of
defects and e-mail notifications are a
few examples that can be mentioned
regarding defects tracking and monitor
mechanisms.

Tracing back to
Requirements, Tests
and Defect causes

TeStudio has been built upon the
principle that the information regarding
SQA and software development
activities must always be easily
accessible to the people who matters.

The cohesive integration of all
the TeStudio modules: TeStudio
Requirement Manager, TeStudio
Automation Lab, TeStudio Defect
Manager and TeStudio Data
Analytics, allows that an intervener
with each TeStudio module easily
reaches information that is handled in
another module.

As an example of this cohesive
integration take for example the
possibility to see which test was
in the origin of a defect and which
requirements it affects.

TeStudio Data Analytics (TSDA) is a web
analytics solution that brings visibility to
Software Quality Assurance metrics.

It enables the analysis of management actions’
effectiveness and enriches the development teams with
project evolution awareness capabilities.

Among other characteristics, one can highlight:

DATA VISIBILITY

•	 Bundled Management KPI’s regarding Software
Quality Assurance

•	 Data accessibility through the web-browser and
information push through connection tools (RSS,
Email)

•	 Embedded export mechanisms

Customization needs

•	 Extendable mediation database to support external
sources of information

•	 Customization mechanisms the allows the
adaptation of the data analytics to the company
needs

3rd party Integrations

•	 Open API that permits data
integration with other systems

Your Software Quality
Assurance Solution

www.telbit.pt

